Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Fungi (Basel) ; 9(10)2023 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-37888236

RESUMO

Considering the toxicity of conventional therapeutic approaches and the importance of precise mechanistic targets, it is important to explore signaling pathways implicated in fungal pathobiology. Moreover, treatment of paracoccidioidomycosis, a systemic mycosis caused by a dimorphic fungus, requires prolonged therapeutic regimens. Among the numerous factors underpinning the establishment of Paracoccidioides spp. infection, the capacity to transition from the mycelial to the yeast form is of pivotal importance. The Drk1 protein of Paracoccidioides brasiliensis likely plays a decisive role in this morphological shift and subsequent virulence. We identified peptides with affinity for the PbDrk1 protein using the phage-display method and assessed the effects of these peptides on P. brasiliensis. The peptides were found to inhibit the phase transition of P. brasiliensis. Furthermore, a substantial proportion of these peptides prevented adhesion to pneumocytes. Although these peptides may not possess inherent antifungal properties, they can augment the effects of certain antifungal agents. Notably, the cell wall architecture of P. brasiliensis appears to be modulated by peptide intervention, resulting in a reduced abundance of glycosylated proteins and lipids. These peptides were also evaluated for their efficacy in a Galleria mellonella model and shown to contribute to enhanced larval survival rates. The role of PbDrk1, which is notably absent in mammals, should be further investigated to improve the understanding of its functional role in P. brasiliensis, which may be helpful for designing novel therapeutic modalities.

2.
mBio ; 13(3): e0030122, 2022 06 28.
Artigo em Inglês | MEDLINE | ID: mdl-35420476

RESUMO

In this study, we investigated the influence of fungal extracellular vesicles (EVs) during biofilm formation and morphogenesis in Candida albicans. Using crystal violet staining and scanning electron microscopy (SEM), we demonstrated that C. albicans EVs inhibited biofilm formation in vitro. By time-lapse microscopy and SEM, we showed that C. albicans EV treatment stopped filamentation and promoted pseudohyphae formation with multiple budding sites. The ability of C. albicans EVs to regulate dimorphism was further compared to EVs isolated from different C. albicans strains, Saccharomyces cerevisiae, and Histoplasma capsulatum. C. albicans EVs from distinct strains inhibited yeast-to-hyphae differentiation with morphological changes occurring in less than 4 h. EVs from S. cerevisiae and H. capsulatum modestly reduced morphogenesis, and the effect was evident after 24 h of incubation. The inhibitory activity of C. albicans EVs on phase transition was promoted by a combination of lipid compounds, which were identified by gas chromatography-tandem mass spectrometry analysis as sesquiterpenes, diterpenes, and fatty acids. Remarkably, C. albicans EVs were also able to reverse filamentation. Finally, C. albicans cells treated with C. albicans EVs for 24 h lost their capacity to penetrate agar and were avirulent when inoculated into Galleria mellonella. Our results indicate that fungal EVs can regulate yeast-to-hypha differentiation, thereby inhibiting biofilm formation and attenuating virulence. IMPORTANCE The ability to undergo morphological changes during adaptation to distinct environments is exploited by Candida albicans and has a direct impact on biofilm formation and virulence. Morphogenesis is controlled by a diversity of stimuli, including osmotic stress, pH, starvation, presence of serum, and microbial components, among others. Apart from external inducers, C. albicans also produces autoregulatory substances. Farnesol and tyrosol are examples of quorum-sensing molecules (QSM) released by C. albicans to regulate yeast-to-hypha conversion. Here, we demonstrate that fungal EVs are messengers impacting biofilm formation, morphogenesis, and virulence in C. albicans. The major players exported in C. albicans EVs included sesquiterpenes, diterpenes, and fatty acids. The understanding of how C. albicans cells communicate to regulate physiology and pathogenesis can lead to novel therapeutic tools to combat candidiasis.


Assuntos
Candida albicans , Vesículas Extracelulares , Biofilmes , Ácidos Graxos/farmacologia , Hifas , Saccharomyces cerevisiae
3.
J Fungi (Basel) ; 7(10)2021 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-34682253

RESUMO

Due to its location, the fungal cell wall is the compartment that allows the interaction with the environment and/or the host, playing an important role during infection as well as in different biological functions such as cell morphology, cell permeability and protection against stress. All these processes involve the activation of signaling pathways within the cell. The cell wall integrity (CWI) pathway is the main route responsible for maintaining the functionality and proper structure of the cell wall. This pathway is highly conserved in the fungal kingdom and has been extensively characterized in Saccharomyces cerevisiae. However, there are still many unknown aspects of this pathway in the pathogenic fungi, such as Cryptococcus neoformans. This yeast is of particular interest because it is found in the environment, but can also behave as pathogen in multiple organisms, including vertebrates and invertebrates, so it has to adapt to multiple factors to survive in multiple niches. In this review, we summarize the components of the CWI pathway in C. neoformans as well as its involvement in different aspects such as virulence factors, morphological changes, and its role as target for antifungal therapies among others.

4.
J Fungi (Basel) ; 7(10)2021 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-34682273

RESUMO

P. brasiliensis is a thermally dimorphic fungus belonging to Paracoccidioides complex, causative of a systemic, endemic mycosis limited to Latin American countries. Signal transduction pathways related to important aspects as surviving, proliferation according to the biological niches are linked to the fungal pathogenicity in many species, but its elucidation in P. brasiliensis remains poorly explored. As Drk1, a hybrid histidine kinase, plays regulators functions in other dimorphic fungi species, mainly in dimorphism and virulence, here we investigated its importance in P. brasilensis. We, therefore generated the respective recombinant protein, anti-PbDrk1 polyclonal antibody and a silenced strain. The Drk1 protein shows a random distribution including cell wall location that change its pattern during osmotic stress condition; moreover the P. brasiliensis treatment with anti-PbDrk1 antibody, which does not modify the fungus's viability, resulted in decreased virulence in G. mellonella model and reduced interaction with pneumocytes. Down-regulating PbDRK1 yielded phenotypic alterations such as yeast cells with more elongated morphology, virulence attenuation in G. mellonella infection model, lower amount of chitin content, increased resistance to osmotic and cell wall stresses, and also caspofungin, and finally increased sensitivity to itraconazole. These observations highlight the importance of PbDrk1 to P. brasiliensis virulence, stress adaptation, morphology, and cell wall organization, and therefore it an interesting target that could help develop new antifungals.

5.
Pathog Dis ; 79(2)2021 02 19.
Artigo em Inglês | MEDLINE | ID: mdl-33417701

RESUMO

Cryptococcus neoformans is a yeast that mainly affects immunocompromised individuals and causes meningoencephalitis depending on the immune status of the host. The present study aimed to validate the efficacy of selective serotonin reuptake inhibitors, fluoxetine hydrochloride (FLH) and paroxetine hydrochloride (PAH), alone and in combination with amphotericin B (AmB) against C. neoformans. Susceptibility tests were conducted using the broth microdilution method and synergistic effects of combining FLH and PAH with AmB were analyzed using the checkerboard assay. Effects of minimum inhibitory concentration (MIC) and synergistic concentration were evaluated in biofilms by quantifying the biomass, measuring the viability by counting the colony-forming units (CFU/mL) and examining the size of the induced capsules. Cryptococcus neoformans was susceptible to FLH and PAH and the synergistic effect of FLH and PAH in combination with AmB reduced the MIC of AmB by up to 8-fold. The isolated substances and combination with AmB were able to reduce biofilm biomass and biofilm viability. In addition, FLH and PAH alone or in combination with AmB significantly decreased the size of the yeast capsules. Collectively, our results indicate the use of FLH and PAH as a promising prototype for the development of anti-cryptococcal drugs.


Assuntos
Anfotericina B/farmacologia , Biofilmes/efeitos dos fármacos , Cryptococcus neoformans/efeitos dos fármacos , Sinergismo Farmacológico , Fluoxetina/farmacologia , Paroxetina/farmacologia , Antifúngicos/farmacologia , Criptococose/tratamento farmacológico , Quimioterapia Combinada , Humanos , Meningoencefalite/tratamento farmacológico , Testes de Sensibilidade Microbiana , Viabilidade Microbiana , Inibidores Seletivos de Recaptação de Serotonina/farmacologia
6.
J Fungi (Basel) ; 7(1)2021 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-33451062

RESUMO

BACKGROUND: Paracoccidioidomycosis (PCM) is a chronic disease that causes sequelae and requires prolonged treatment; therefore, new therapeutic approaches are necessary. In view of this, three peptides from Paracoccidioides brasiliensis 14-3-3 protein were selected based on its immunogenicity and therapeutic potential. METHODS: The in vitro antifungal activity and cytotoxicity of the 14-3-3 peptides were evaluated. The influence of the peptides in immunological and survival aspects was evaluated in vivo, using Galleria mellonella and the expression of antimicrobial peptide genes in Caenorhabditis elegans. RESULTS: None of the peptides were toxic to HaCaT (skin keratinocyte), MRC-5 (lung fibroblast), and A549 (pneumocyte) cell lines, and only P1 exhibited antifungal activity against Paracoccidioides spp. The peptides could induce an immune response in G. mellonella. Moreover, the peptides caused a delay in the death of Paracoccidioides spp. infected larvae. Regarding C. elegans, the three peptides were able to increase the expression of the antimicrobial peptides. These peptides had essential effects on different aspects of Paracoccidioides spp. infection showing potential for a therapeutic vaccine. Future studies using mammalian methods are necessary to validate our findings.

7.
Fungal Genet Biol ; 144: 103438, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32738289

RESUMO

Cryptococcus gattii is an etiologic agent of cryptococcosis, a potentially fatal disease that affects humans and animals. The successful infection of mammalian hosts by cryptococcal cells relies on their ability to infect and survive in macrophages. Such phagocytic cells present a hostile environment to intracellular pathogens via the production of reactive nitrogen and oxygen species, as well as low pH and reduced nutrient bioavailability. To overcome the low-metal environment found during infection, fungal pathogens express high-affinity transporters, including members of the ZIP family. Previously, we determined that functional zinc uptake driven by Zip1 and Zip2 is necessary for full C.gattiivirulence. Here, we characterized the ZIP3 gene of C. gattii, an ortholog of the Saccharomyces cerevisiae ATX2, which codes a manganese transporter localized to the membrane of the Golgi apparatus. Cryptococcal cells lacking Zip3 were tolerant to toxic concentrations of manganese and had imbalanced expression of intracellular metal transporters, such as the vacuolar Pmc1 and Vcx1, as well as the Golgi Pmr1. Moreover, null mutants of the ZIP3 gene displayed higher sensitivity to reactive oxygen species (ROS) and substantial alteration in the expression of ROS-detoxifying enzyme-coding genes. In line with these phenotypes, cryptococcal cells displayed decreased virulence in a non-vertebrate model of cryptococcosis. Furthermore, we found that the ZIP3 null mutant strain displayed decreased melanization and secretion of the major capsular component glucuronoxylomannan, as well as an altered extracellular vesicle dimensions profile. Collectively, our data suggest that Zip3 activity impacts the physiology, and consequently, several virulence traits of C. gattii.


Assuntos
Proteínas de Transporte de Cátions/genética , Cryptococcus gattii/genética , Proteínas de Saccharomyces cerevisiae/genética , Ubiquitina-Proteína Ligases/genética , Animais , Criptococose/genética , Criptococose/microbiologia , Criptococose/patologia , Cryptococcus gattii/metabolismo , Cryptococcus gattii/patogenicidade , Humanos , Macrófagos/metabolismo , Manganês/metabolismo , Fenótipo , Espécies Reativas de Oxigênio/metabolismo , Virulência/genética
8.
Artigo em Inglês | MEDLINE | ID: mdl-31988099

RESUMO

Amphotericin B (AmB) is the antifungal with the strongest fungicidal activity, but its use has several limitations, mainly associated with its toxicity. Although some lipidic and liposomal formulations that present reduced toxicity are available, their price limits their application in developing countries. Flucytosine (5FC) has shown synergistic effect with AmB for treatment of some fungal infections, such as cryptococcosis, but again, its price is a limitation for its use in many regions. In the present work, we aimed to identify new drugs that have a minor effect on Cryptococcus neoformans, reducing its growth in the presence of subinhibitory concentrations of AmB. In the initial screening, we found fourteen drugs that had this pattern. Later, checkerboard assays of selected compounds, such as erythromycin, riluzole, nortriptyline, chenodiol, nisoldipine, promazine, chlorcyclizine, cloperastine, and glimepiride, were performed and all of them confirmed for their synergistic effect (fractional inhibitory concentration index [FICI] < 0.5). Additionally, toxicity of these drugs in combination with AmB was tested in mammalian cells and in zebrafish embryos. Harmless compounds, such as the antibiotic erythromycin, were found to have synergic activity with AmB, not only against C. neoformans but also against some Candida spp., in particular against Candida albicans In parallel, we identified drugs that had antifungal activity against C. neoformans and found 43 drugs that completely inhibited the growth of this fungus, such as ciclopirox and auranofin. Our results expand our knowledge about antifungal compounds and open new perspectives in the treatment of invasive mycosis based on repurposing off-patent drugs.


Assuntos
Anfotericina B/farmacologia , Antifúngicos/farmacologia , Candida albicans/efeitos dos fármacos , Cryptococcus neoformans/efeitos dos fármacos , Reposicionamento de Medicamentos , Animais , Auranofina/farmacologia , Candidíase/tratamento farmacológico , Linhagem Celular , Ciclopirox/farmacologia , Criptococose/tratamento farmacológico , Avaliação Pré-Clínica de Medicamentos/métodos , Sinergismo Farmacológico , Eritromicina/farmacologia , Flucitosina/farmacologia , Humanos , Camundongos , Testes de Sensibilidade Microbiana , Infecções Oportunistas/tratamento farmacológico , Infecções Oportunistas/microbiologia , Células RAW 264.7 , Peixe-Zebra/embriologia
9.
Front Cell Infect Microbiol ; 10: 591950, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33553002

RESUMO

Heat shock proteins (Hsps) are among the most widely distributed and evolutionary conserved proteins, acting as essential regulators of diverse constitutive metabolic processes. The Hsp60 of the dimorphic fungal Histoplasma capsulatum is the major surface adhesin to mammalian macrophages and studies of antibody-mediated protection against H. capsulatum have provided insight into the complexity involving Hsp60. However, nothing is known about the role of Hsp60 regarding biofilms, a mechanism of virulence exhibited by H. capsulatum. Considering this, the present study aimed to investigate the influence of the Hsp60 on biofilm features of H. capsulatum. Also, the non-conventional model Galleria mellonella was used to verify the effect of this protein during in vivo interaction. The use of invertebrate models such as G. mellonella is highly proposed for the evaluation of pathogenesis, immune response, virulence mechanisms, and antimicrobial compounds. For that purpose, we used a monoclonal antibody (7B6) against Hsp60 and characterized the biofilm of two H. capsulatum strains by metabolic activity, biomass content, and images from scanning electron microscopy (SEM) and confocal laser scanning microscopy (CLSM). We also evaluated the survival rate of G. mellonella infected with both strains under blockage of Hsp60. The results showed that mAb 7B6 was effective to reduce the metabolic activity and biomass of both H. capsulatum strains. Furthermore, the biofilms of cells treated with the antibody were thinner as well as presented a lower amount of cells and extracellular polymeric matrix compared to its non-treated controls. The blockage of Hsp60 before fungal infection of G. mellonella larvae also resulted in a significant increase of the larvae survival compared to controls. Our results highlight for the first time the importance of the Hsp60 protein to the establishment of the H. capsulatum biofilms and the G. mellonella larvae infection. Interestingly, the results with Hsp60 mAb 7B6 in this invertebrate model suggest a pattern of fungus-host interaction different from those previously found in a murine model, which can be due to the different features between insect and mammalian immune cells such as the absence of Fc receptors in hemocytes. However further studies are needed to support this hypothesis.


Assuntos
Chaperonina 60 , Histoplasma , Animais , Anticorpos Monoclonais , Biofilmes , Chaperonina 60/genética , Macrófagos , Camundongos
10.
Sci Rep ; 9(1): 17206, 2019 11 20.
Artigo em Inglês | MEDLINE | ID: mdl-31748561

RESUMO

The genus Paracoccidioides consist of dimorphic fungi geographically limited to the subtropical regions of Latin America, which are responsible for causing deep systemic mycosis in humans. However, the molecular mechanisms by which Paracoccidioides spp. causes the disease remain poorly understood. Paracoccidioides spp. harbor genes that encode proteins involved in host cell interaction and mitochondrial function, which together are required for pathogenicity and mediate virulence. Previously, we identified TufM (previously known as EF-Tu) in Paracoccidioides brasiliensis (PbTufM) and suggested that it may be involved in the pathogenicity of this fungus. In this study, we examined the effects of downregulating PbTUFM using a silenced strain with a 55% reduction in PbTUFM expression obtained by antisense-RNA (aRNA) technology. Silencing PbTUFM yielded phenotypic differences, such as altered translation elongation, respiratory defects, increased sensitivity of yeast cells to reactive oxygen stress, survival after macrophage phagocytosis, and reduced interaction with pneumocytes. These results were associated with reduced virulence in Galleria mellonella and murine infection models, emphasizing the importance of PbTufM in the full virulence of P. brasiliensis and its potential as a target for antifungal agents against paracoccidioidomycosis.


Assuntos
Comunicação Celular , Interações Hospedeiro-Patógeno , Paracoccidioides/patogenicidade , Paracoccidioidomicose/microbiologia , Fator Tu de Elongação de Peptídeos/metabolismo , Fatores de Virulência/metabolismo , Virulência , Animais , Regulação para Baixo , Macrófagos/imunologia , Macrófagos/microbiologia , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Paracoccidioides/metabolismo , Paracoccidioidomicose/metabolismo , Fagocitose
11.
Artigo em Inglês | MEDLINE | ID: mdl-31451502

RESUMO

The available antifungal therapeutic arsenal is limited. The search for alternative drugs with fewer side effects and new targets remains a major challenge. Decyl gallate (G14) is a derivative of gallic acid with a range of biological activities and broad-spectrum antifungal activity. Previously, our group demonstrated the promising anti-Paracoccidioides activity of G14. In this work, to evaluate the antifungal characteristics of G14 for Paracoccidioides lutzii, a chemical-genetic interaction analysis was conducted on a Saccharomyces cerevisiae model. N-glycosylation and/or the unfolded protein response pathway was identified as a high-confidence process for drug target prediction. The overactivation of unfolded protein response (UPR) signaling was confirmed using this model with IRE1/ATF6/PERK genes tagged with green fluorescent protein (GFP). In P. lutzii, this prediction was confirmed by the low activity of glycosylated enzymes [α-(1,3)-glucanase, N-acetyl-ß-d-glucosaminidase (NAGase), and α-(1,4)-amylase], by hyperexpression of genes involved with the UPR and glycosylated enzymes, and by the reduction in the amounts of glycosylated proteins and chitin. All of these components are involved in fungal cell wall integrity and are dependent on the N-glycosylation process. This loss of integrity was confirmed by the reduction in mitochondrial activity, impaired budding, enhancement of wall permeability, and a decrease in viability. These events led to a reduction of the ability of fungi to adhere on human lung epithelial cells (A549) in vitro Therefore, G14 may have an important role in balancing the inflammatory reaction caused by fungal infection, without interfering with the microbicidal activity of nitric oxide. This work provides new information on the activity of G14, a potential anti-Paracoccidioides compound.


Assuntos
Antifúngicos/farmacologia , Ácido Gálico/farmacologia , Glicosilação/efeitos dos fármacos , Paracoccidioides/efeitos dos fármacos , Células A549 , Linhagem Celular Tumoral , Parede Celular/efeitos dos fármacos , Parede Celular/metabolismo , Quitina/metabolismo , Proteínas Fúngicas/metabolismo , Proteínas de Fluorescência Verde/metabolismo , Humanos , Pulmão/microbiologia , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Paracoccidioides/metabolismo , Paracoccidioidomicose/tratamento farmacológico , Paracoccidioidomicose/metabolismo , Paracoccidioidomicose/microbiologia , Saccharomyces cerevisiae/efeitos dos fármacos , Saccharomyces cerevisiae/metabolismo , Resposta a Proteínas não Dobradas/efeitos dos fármacos
12.
Magn Reson Chem ; 57(8): 458-471, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-30993742

RESUMO

Traditionally, the screening of metabolites in microbial matrices is performed by monocultures. Nonetheless, the absence of biotic and abiotic interactions generally observed in nature still limit the chemical diversity and leads to "poorer" chemical profiles. Nowadays, several methods have been developed to determine the conditions under which cryptic genes are activated, in an attempt to induce these silenced biosynthetic pathways. Among those, the one strain, many compounds (OSMAC) strategy has been applied to enhance metabolic production by a systematic variation of growth parameters. The complexity of the chemical profiles from OSMAC experiments has required increasingly robust and accurate techniques. In this sense, deconvolution-based 1 HNMR quantification have emerged as a promising methodology to decrease complexity and provide a comprehensive perspective for metabolomics studies. Our present work shows an integrated strategy for the increased production and rapid quantification of compounds from microbial sources. Specifically, an OSMAC design of experiments (DoE) was used to optimize the microbial production of bioactive fusaric acid, cytochalasin D and 3-nitropropionic acid, and Global Spectral Deconvolution (GSD)-based 1 HNMR quantification was carried out for their measurement. The results showed that OSMAC increased the production of the metabolites by up to 33% and that GSD was able to extract accurate NMR integrals even in heavily coalescence spectral regions. Moreover, GSD-1 HNMR quantification was reproducible for all species and exhibited validated results that were more selective and accurate than comparative methods. Overall, this strategy up-regulated important metabolites using a reduced number of experiments and provided fast analyte monitor directly in raw extracts.


Assuntos
Técnicas de Cultura de Células/métodos , Citocalasina D/metabolismo , Ácido Fusárico/biossíntese , Metabolômica/métodos , Nitrocompostos/metabolismo , Propionatos/metabolismo , Ascomicetos/isolamento & purificação , Ascomicetos/metabolismo , Citocalasina D/análise , Ácido Fusárico/análise , Nitrocompostos/análise , Propionatos/análise , Espectroscopia de Prótons por Ressonância Magnética
13.
Artigo em Inglês | MEDLINE | ID: mdl-31001487

RESUMO

Candida auris is an emerging fungal pathogen of great concern among the scientific community because it is causing an increasing number of hospital outbreaks of difficult management worldwide. In addition, isolates from this species frequently present reduced susceptibility to azole and echinocandin drugs. For this reason, it is necessary to develop new antifungal strategies to better control the disease caused by this yeast. In this work, we screened drugs from the Prestwick chemical library, which contains 1,280 off-patent compounds that are already approved by the Food and Drug Administration, with the aim of identifying molecules with antifungal activity against C. auris. In an initial screening, we looked for drugs that inhibited the growth of three different C. auris strains and found 27 of them which it did so. Ten active compounds were selected to test the susceptibility profile by using the EUCAST protocol. Antifungal activity was confirmed for seven drugs with MICs ranging from 0.5 to 64 mg/L. Some of these drugs were also tested in combination with voriconazole and anidulafungin at sub-inhibitory concentrations. Our results suggest synergistic interactions between suloctidil and voriconazole with fractional inhibitory concentration index (FICI) values of 0.11 to 0.5 and between ebselen and anidulafungin (FICI, 0.12 to 0.44). Our findings indicate that drug repurposing could be a viable alternative to managing infections by C. auris.


Assuntos
Antifúngicos/isolamento & purificação , Antifúngicos/farmacologia , Candida/efeitos dos fármacos , Candida/crescimento & desenvolvimento , Avaliação Pré-Clínica de Medicamentos/métodos , Reposicionamento de Medicamentos/métodos , Sinergismo Farmacológico , Testes de Sensibilidade Microbiana , Suloctidil/farmacologia , Voriconazol/farmacologia
14.
Med Mycol ; 57(7): 900-904, 2019 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-30476159

RESUMO

The Paracoccidioides brasiliensis strain downregulated the expression of adhesin Pb14-3-3 (Pb14-3-3 aRNA) was evaluated in a murine model of paracoccidioidomycosis (PCM). Pb14-3-3 aRNA displays attenuated virulence and triggered the formation of fewer granulomas by lowering the fungal burden in the lungs. Additionally, the Pb14-3-3 aRNA showed more elongated yeast cells and less ability to induce pneumocytes apoptosis in vitro. Our results show that 14-3-3 is an important virulence factor in P. brasiliensis-induced pulmonary infection.


Assuntos
Proteínas 14-3-3/genética , Proteínas Fúngicas/genética , Paracoccidioides/genética , Paracoccidioides/patogenicidade , Fatores de Virulência/genética , Células Epiteliais Alveolares/microbiologia , Células Epiteliais Alveolares/patologia , Animais , Apoptose/genética , Modelos Animais de Doenças , Expressão Gênica , Pulmão/citologia , Pulmão/microbiologia , Camundongos , Camundongos Endogâmicos BALB C , Paracoccidioidomicose/microbiologia
15.
Mol Microbiol ; 111(4): 898-917, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30536975

RESUMO

Ppz Ser/Thr protein phosphatases (PPases) are found only in fungi and have been proposed as potential antifungal targets. In Saccharomyces cerevisiae Ppz1 (ScPpz1) is involved in regulation of monovalent cation homeostasis. ScPpz1 is inhibited by two regulatory proteins, Hal3 and Vhs3, which have moonlighting properties, contributing to the formation of an unusual heterotrimeric PPC decarboxylase (PPCDC) complex crucial for CoA biosynthesis. Here we report the functional characterization of CnPpz1 (CNAG_03673) and two possible Hal3-like proteins, CnHal3a (CNAG_00909) and CnHal3b (CNAG_07348) from the pathogenic fungus Cryptococcus neoformans. Deletion of CnPpz1 or CnHal3b led to phenotypes unrelated to those observed in the equivalent S. cerevisiae mutants, and the CnHal3b-deficient strain was less virulent. CnPpz1 is a functional PPase and partially replaced endogenous ScPpz1. Both CnHal3a and CnHal3b interact with ScPpz1 and CnPpz1 in vitro but do not inhibit their phosphatase activity. Consistently, when expressed in S. cerevisiae, they poorly reproduced the Ppz1-regulatory properties of ScHal3. In contrast, both proteins were functional monogenic PPCDCs. The CnHal3b isoform was crystallized and, for the first time, the 3D-structure of a fungal PPCDC elucidated. Therefore, our work provides the foundations for understanding the regulation and functional role of the Ppz1-Hal3 system in this important pathogenic fungus.


Assuntos
Cryptococcus neoformans/enzimologia , Cryptococcus neoformans/genética , Proteínas Fúngicas/genética , Fosfoproteínas Fosfatases/genética , Proteínas Fúngicas/metabolismo , Regulação Fúngica da Expressão Gênica , Modelos Moleculares , Fenótipo , Fosfoproteínas Fosfatases/metabolismo , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
16.
PLoS Pathog ; 14(5): e1007007, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29775477

RESUMO

Cryptococcus neoformans is an encapsulated pathogenic yeast that can change the size of the cells during infection. In particular, this process can occur by enlarging the size of the capsule without modifying the size of the cell body, or by increasing the diameter of the cell body, which is normally accompanied by an increase of the capsule too. This last process leads to the formation of cells of an abnormal enlarged size denominated titan cells. Previous works characterized titan cell formation during pulmonary infection but research on this topic has been hampered due to the difficulty to obtain them in vitro. In this work, we describe in vitro conditions (low nutrient, serum supplemented medium at neutral pH) that promote the transition from regular to titan-like cells. Moreover, addition of azide and static incubation of the cultures in a CO2 enriched atmosphere favored cellular enlargement. This transition occurred at low cell densities, suggesting that the process was regulated by quorum sensing molecules and it was independent of the cryptococcal serotype/species. Transition to titan-like cell was impaired by pharmacological inhibition of PKC signaling pathway. Analysis of the gene expression profile during the transition to titan-like cells showed overexpression of enzymes involved in carbohydrate metabolism, as well as proteins from the coatomer complex, and related to iron metabolism. Indeed, we observed that iron limitation also induced the formation of titan cells. Our gene expression analysis also revealed other elements involved in titan cell formation, such as calnexin, whose absence resulted in appearance of abnormal large cells even in regular rich media. In summary, our work provides a new alternative method to investigate titan cell formation devoid the bioethical problems that involve animal experimentation.


Assuntos
Cryptococcus neoformans/citologia , Cryptococcus neoformans/patogenicidade , Animais , Criptococose/microbiologia , Cryptococcus neoformans/genética , Perfilação da Expressão Gênica , Genes Fúngicos , Interações Hospedeiro-Patógeno/genética , Interações Hospedeiro-Patógeno/fisiologia , Humanos , Macrófagos/microbiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Modelos Biológicos , Fagocitose , Fenótipo , Percepção de Quorum , Células RAW 264.7 , Transdução de Sinais
17.
Pathog Dis ; 76(1)2018 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-29361158

RESUMO

Paracoccidioidomycosis is a systemic fungal infection affecting mainly Latin American countries that is caused by Paracoccidioides brasiliensis and Paracoccidioides lutzii. During the study of fungal pathogenesis, in vivo studies are crucial to understand the overall mechanisms involving the infection as well as to search for new therapeutic treatments and diagnosis. Caenorhabditis elegans is described as an infection model for different fungi species and a well-characterized organism to study the innate immune response. This study evaluates C. elegans as an infection model for Paracoccidioides spp. It was observed that both species do not cause infection in C. elegans, as occurs with Candida albicans, and one possible explanation is that the irregular size and shape of Paracoccidioides spp. difficult the ingestion of these fungi by the nematode. Besides this difficulty in the infection, we could observe that the simple exposition of C. elegans to Paracoccidioides species was able to trigger a distinct pattern of expression of antimicrobial peptide genes. The expression of cnc-4, nlpl-27 and nlp-31 was superior after the exposure to P. brasiliensis in comparison to P. lutzii (P < 0.05), and these findings demonstrate important differences regarding innate immune response activation caused by the two species of the Paracoccidioides genus.


Assuntos
Caenorhabditis elegans/microbiologia , Modelos Animais de Doenças , Paracoccidioides/crescimento & desenvolvimento , Paracoccidioidomicose/microbiologia , Paracoccidioidomicose/patologia , Animais , Peptídeos Catiônicos Antimicrobianos/biossíntese , Caenorhabditis elegans/imunologia , Candida albicans , Perfilação da Expressão Gênica , Imunidade Inata , Paracoccidioides/imunologia
18.
Med Mycol ; 56(3): 374-377, 2018 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-28637229

RESUMO

Paracoccidioidomycosis (PCM) is a fungal disease restricted to Latin countries, and its etiologic agents derive from the Paracoccidioides genus. Attenuation or loss of virulence in Paracoccidioides spp. following successive subculturing has been described. However, virulence can be recovered by passage in mammalian host. In this study, the recovery of adhesion of P. brasiliensis through passage in mice was compared to that in the insect Galleria mellonella. Analysis of in vitro fungal-host cell interaction, gene expression of adhesins, and analysis of the survival curves revealed that Galleria mellonella is useful for the reactivation of P. brasiliensis adhesion.


Assuntos
Adesinas Bacterianas/metabolismo , Mariposas/microbiologia , Paracoccidioides/patogenicidade , Paracoccidioidomicose/microbiologia , Paracoccidioidomicose/mortalidade , Fatores de Virulência/metabolismo , Adesinas Bacterianas/genética , Animais , Modelos Animais de Doenças , Perfilação da Expressão Gênica , Regulação da Expressão Gênica/fisiologia , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Paracoccidioides/genética , Paracoccidioidomicose/patologia , Taxa de Sobrevida , Virulência/genética , Fatores de Virulência/genética
19.
Med Mycol ; 55(8): 890-894, 2017 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-28339963

RESUMO

Apoptosis is considered an escape mechanism from the host immune system for the fungus Paracoccidioides spp, and it serves as a vehicle for entry into macrophages without stimulating microbicidal activities. Recently, gp43 of P. brasiliensis was demonstrated to be involved in this process. Therefore, as a new therapeutic alternative, it is very important to study compounds that could reduce the modulation of the induction of apoptosis caused by this fungus. Decyl gallate (G14) is a known antifungal compound, and we decided to investigate its anti-apoptotic properties. Our results demonstrate that G14 was effective against apoptosis induced by gp43, as observed in epithelial cells, and led to a reduction in DNA damage, Bak down-regulation and Bcl-2 up-regulation. Together, these data show that G14 presents promising anti-apoptotic activity.


Assuntos
Antifúngicos/farmacologia , Apoptose/efeitos dos fármacos , Glicoproteínas/fisiologia , Paracoccidioides/fisiologia , Células A549 , Células Epiteliais Alveolares/microbiologia , Células Epiteliais Alveolares/patologia , Antígenos de Fungos/metabolismo , Linhagem Celular , Dano ao DNA/efeitos dos fármacos , Proteínas Fúngicas/metabolismo , Regulação da Expressão Gênica/efeitos dos fármacos , Genes bcl-2/genética , Humanos , Paracoccidioidomicose/fisiopatologia , Proteína Killer-Antagonista Homóloga a bcl-2/genética
20.
Int J Antimicrob Agents ; 48(5): 504-511, 2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-27742203

RESUMO

Cryptococcosis is an opportunistic fungal infection responsible for high morbidity and mortality in immunocompromised patients. Combination of antifungal substances is a promising way to increase the percentage of successful treatment. Pedalitin (PED) is a natural substance obtained from Pterogyne nitens. The aim of this study was to verify the efficacy of PED alone and in combination with amphotericin B (AmB) in vitro and in vivo against Cryptococcus spp. In the in vitro assay, minimum inhibitory concentrations (MICs) of 0.125 mg/L for AmB and 3.9 mg/L for PED were found when the substances were tested alone, whilst in the combination treatment the active concentration of both decreased, with MICs of 0.03 mg/L for AmB and 1 mg/L for PED. In the survival assay, fungal burden study and histopathological assays it was possible to study the efficacy of the substances alone and in combination. The efficacy of combination therapy was considered better than monotherapy as evaluated in a Galleria mellonella model and a murine model. Thus, the combination of PED and AmB is an interesting alternative for anticryptococcal fungal treatment. Moreover, a correlation was observed between the invertebrate and murine models for this antifungal treatment combination.


Assuntos
Anfotericina B/farmacologia , Antifúngicos/farmacologia , Cryptococcus neoformans/efeitos dos fármacos , Sinergismo Farmacológico , Flavonas/farmacologia , Anfotericina B/administração & dosagem , Animais , Antifúngicos/administração & dosagem , Contagem de Colônia Microbiana , Criptococose/tratamento farmacológico , Criptococose/microbiologia , Modelos Animais de Doenças , Flavonas/administração & dosagem , Lepidópteros , Camundongos Endogâmicos BALB C , Testes de Sensibilidade Microbiana , Análise de Sobrevida , Resultado do Tratamento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...